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Abstract
Quantum states and their optical responses of low-dimensional electron–hole
systems in photoexcited semiconductors and/or metals are reviewed from a
theoretical viewpoint, stressing the electron–hole Coulomb interaction, the
excitonic effects, the Fermi-surface effects and the dimensionality. Recent
progress of theoretical studies is stressed and important problems to be solved
are introduced. We cover not only single-exciton problems but also few-
exciton and many-exciton problems, including electron–hole plasma situations.
Dimensionality of the Wannier exciton is clarified in terms of its linear and
nonlinear responses. We also discuss a biexciton system, exciton bosonization
technique, high-density degenerate electron–hole systems, gas–liquid phase
separation in an excited state and the Fermi-edge singularity due to a Mahan
exciton in a low-dimensional metal.

1. Introduction

Stimulated by recent progress in fabrication techniques of low-dimensional semiconductors,
geometrical confinement effects on their transport and optical properties have been attracting
much attention. In particular, optical characteristics of such materials, which reflect higher
excited states and the relaxation effects, are of special importance in terms of not only
fundamental condensed-matter physics [1] but also photonic device applications. In linear
optical responses of semiconductors or insulators, an electron and a hole excited, respectively,
in a conduction and a valence band, or their composite particle called an exciton, play central
roles. In low-dimensional structures, the Coulomb correlation effects or the excitonic effects
become more prominent than in bulk structures, leading to peculiar optical characteristics
combined with geometrical confinement effects. In this paper, quantum states and their
optical responses of low-dimensional photoexcited semiconductors are reviewed from a
theoretical viewpoint, stressing the electron–hole Coulomb interaction and the excitonic
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effects. Recent progress of theoretical studies is highlighted and important problems to be
solved are introduced.

This paper is organized as follows. In section 2, fundamental remarks on low-dimensional
electron–hole systems are summarized. Section 3 is devoted to single-exciton problems,
including linear and nonlinear optical responses of the Wannier exciton in low dimensions.
Nonlinear optical quantities (e.g., two-photon absorption rates) are stressed in terms of a
probe for determining the exciton’s dimensionality. In section 4, an excitonic molecule in
one dimension is analysed numerically. Several treatments for the exciton–exciton correlation
are introduced in section 5 to clarify an origin of χ(3) excitonic nonlinearities in terms of the
fermionic or bosonic picture. Deviation of an exciton from a pure boson (i.e. anharmonicity and
the exciton–exciton interaction) is of importance in four-wave-mixing processes. In section 6,
quantum order of a one-dimensional high-density electron–hole system at zero temperature
is analytically clarified with the use of the two-band Tomonaga–Luttinger model. Section 7
is used to discuss the dynamics of the gas–liquid phase separation in an excited state at finite
temperature. How the finite lifetime of the particles affects the spinodal decomposition is
clarified. The dynamical responses of one-dimensional metals are reviewed in section 8,
where a Mahan exciton and the Fermi-edge singularity (FES) are introduced. Recent progress
of the FES theory in one and two dimensions is given in section 9, where we show that the
FES is crucially affected by the trion (charged exciton complex) configuration as well as the
Mahan exciton.

2. Remarks on low-dimensional electron–hole systems

When we define an exciton as a bound state of an electron in a conduction band and a hole in
a valence band1, there are two limiting types of exciton: the Wannier exciton and the Frenkel
exciton. Generally speaking, the wavefunction of the electron–hole relative motion of the
Wannier exciton is more sensitively affected by a spatial geometry than that of the Frenkel
excitons. Thus we will review theoretical problems related to the electron–hole relative motion
of a Wannier exciton confined in d = 1 [2] or d = 2.

The Wannier exciton has three degrees of freedom: a centre-of-mass motion, an electron–
hole relative motion and a spin configuration, where the latter two are internal degrees of
freedom. In perfect rigid crystals in d dimensions (d = 1, 2, 3), the centre-of-mass motion is
well described by a plane wave with a d-dimensional wavevector K. Since only the centre-of-
mass state of K ∼ 0 contributes to the optical responses, the electron–hole relative motion and
the subband (sublevel) structures mainly determine the optical properties of low-dimensional
exciton systems. In the following, we consider a quasi-two-dimensional (d � 2) and a quasi-
one-dimensional (d � 1) semiconductor2 with a dipole-allowed direct band gap E (d)

gap,3 which
consists of a single conduction band and a single valence band [3].

The relation between the number of excitons4 and the optical responses is a long-standing
problem in exciton physics. Under a weak excitation condition, only an electron and a hole
are created, which form a bound state due to the Coulomb attraction. This is just a two-

1 Although an exciton in the narrow sense means only the lowest-energy (1s) state in electron–hole bound states,
there exist many bound states in general. In the broad sense, scattering (unbound) states of an electron and a hole are
also treated as excitons.
2 Dimensionality of the electron–hole relative motion will be defined afterwards. In this paper, the ‘quasi-two-
dimensional’ (‘quasi-one-dimensional’) case with a finite confinement width of the system is denoted as ‘d � 2’
(‘d � 1’). The purely two-dimensional (one-dimensional) case is written as d = 2 (d = 1).
3 The upward energy shift due to the subband formation is included in the definition of E(d)gap.
4 We should note that the number of excitons is not always a well-defined quantity. Fluctuation of the exciton number
is often important.
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body problem, which can be solved in principle, e.g., with the use of the effective-mass
approximation. However, in the case of stronger excitation where many (more than one)
electrons and holes are excited in semiconductors, many-body effects should be taken into
account: for example, formation of an excitonic molecule as a four-fermion problem or the
Bose–Einstein condensation of excitons as a (N + N)-fermion problem. In any case, the
interparticle Coulomb interaction plays an essential role in exciton problems.

There are several length scales characterizing the electron–hole system: the de Broglie
wavelength of Bloch electronsλe and λh, the exciton effective Bohr radius a∗

B for single exciton
systems in d = 3, the Fermi wavelength 2π/kF for high-density degenerate electron–hole
systems, the coherence/localization length of the centre-of-mass motion in unperfect crystals,
and so on. The dimensionality of exciton systems depends on the ratio of the geometrical-
confinement length L⊥ to these length scales in which we are interested5. We should always
bear in mind which degree of freedom is confined geometrically.

Here we note general characteristics of low-dimensional systems.

(a) The low-dimensional systems are sensitive to lattice distortions and fluctuations, which
lead to the Peierls instability, self-trapped states and polaron formation. Soliton excitations
are also possible in d = 1.

(b) Quantum fluctuation plays an important role at low temperature, which suppresses any
long-range orderings. Then the mean-field approximation becomes invalid.

(c) Electronic correlation becomes of more importance due to effective reduction of the kinetic
energy.

(d) The electronic structures are easily affected by the randomness. An electron or an exciton
suffers from the Anderson localization in the presence of infinitesimally weak randomness.

All these features should be taken into account in general in the study of low-dimensional
systems.

3. Low-dimensional Wannier exciton

To simplify the problem, we employ the effective-mass approximation and the envelope
function approximation. Exchange and spin–orbit interactions are neglected here, then only
the spin-singlet exciton is considered. We take the r‖ axis along the unconfined directions and
the r⊥ axis along the confined directions. In d � 2 systems, r‖ = (x, y) and r⊥ = z, while
for d � 1 systems, r‖ = x and r⊥ = (y, z). A normalization length along the unconfined
directions is L‖. Since we are most interested in low dimensionality of the electron–hole
relative motion of a Wannier exciton, a < L⊥ < a∗

B is assumed6 with the lattice constant a.
The d-dimensional exciton envelope function for K ∼ 0 can be written as

L−d/2
‖ �

(d)
ν,{α}{β}(reh) φ{α}(re⊥) φ∗

{β}(rh⊥), (1)

where reh ≡ re‖−rh‖ is the electron–hole relative coordinate,�(d)
ν,{α}{β} represents the electron–

hole relative motion along the unconfined (reh) directions, which is specified by a quantum
number(s) ν, and φ{α} (φ{β}) denotes a subband envelope function in the conduction (valence)

5 An energy scale describing the geometrical confinement corresponds to the subband separation, being proportional
approximately to L−2

⊥ .
6 In the d = 2 limit, the exciton Bohr radius becomes 1

2 a∗
B. Therefore, strictly speaking, L⊥ < 1

2 a∗
B is required to

realize the d � 1 situation.
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band, which is determined by the shape of the confinement potential in quantum structures.
When the confinement is strong, �(d)

ν,{α}{β} satisfies[
− h̄2

2µ
�d + V (d)(reh)

]
�
(d)
ν,{α}{β}(reh) = E (d)

ν �
(d)
ν,{α}{β}(reh), (2)

where µ is the electron–hole reduced mass, �d , d-dimensional Laplacian, E (d)
ν , an exciton

energy measured from E (d)
gap, V (d)(reh) the effective d-dimensional Coulomb potential,

V (d)(reh) =
∫

V (3)(re, rh)|φ{α}(re⊥)|2|φ{β}(rh⊥)|2
∏

dre⊥ drh⊥, (3)

with the Coulomb potential V (3)(re, rh) = −(e2/ε)|re − rh|−1 in d = 3, where ε is the
relevant dielectric constant. The exciton has discrete spectra for E (d)

ν < 0 and continuous
spectra for E (d)

ν > 0. For d = 2 with L⊥ → 0, single-exciton problems have been solved
exactly [4], showing that the exciton binding energy |E (2)

0 | is four times larger than that in d = 3
(correspondingly, the Bohr radius becomes half). Thus the two dimensionality enhances the
excitonic effects. In the d � 2 case (L⊥ > 0), variational approximation has been employed
to discuss the excitonic effects [5].

In d = 1 (L⊥ → 0), the Coulomb attractive interaction is given by V (1)(reh) =
−(e2/ε)|xe−xh|−1. Under this situation the exciton bound states have pathological features [6]:

(i) the divergence of the binding energy of the lowest state (|E (1)
0 | → ∞),

(ii) the
√
δ(reh)-like wavefunction of the lowest state, and

(iii) the violation of the nondegeneracy theorem for other bound states.

These unphysical anomalies result from the divergence of the Coulomb potential at the origin
(reh = 0). Since in d = 1 an electron and a hole cannot move without touching with each
other, the divergence at the origin becomes more crucial than in higher dimensions.

In order to avoid the divergence and to obtain analytical solutions, a regularized
potential [7, 8] is often employed: V (1)(reh; x0) ≡ −(e2/ε)(|reh| + x0)

−1 with a cutoff x0 � 0.
The cutoff x0 is found to be proportional to the lateral size of the wire (e.g., x0 � 0.18L⊥ for
a square cross-section). Then we have relative wavefunctions of the bound states as [9]

�
(1)
ν,{α}{β}(r̃eh) = Nν r̃ehe−r̃eh/2�(1 + ν)[F(1 − ν, 2; r̃eh)− G(1 − ν, 2; r̃eh)], (4)

where r̃eh = 2(|reh|+x0)/(νa∗
B), Nν is the normalization constant,�(z) is the gamma function,

F(α, γ ; r̃eh) and G(α, γ ; r̃eh) are the confluent hypergeometric functions. Here ν specifies the
energy eigenvalues (E (1)

ν = −E∗
R/ν

2), which is not necessarily an integer and is determined
by the additional constraints [9]:

�
(1)
ν,{α}{β}(r̃eh = 2x0/νa∗

B) = 0 (even parity state), (5)

d�(1)
ν,{α}{β}(r̃eh)

dr̃eh

∣∣∣∣
r̃eh=2x0/νa∗

B

= 0 (odd parity state). (6)

E∗
R is the effective Rydberg. As x0 → 0 (i.e. L⊥ → 0), the energy of the lowest state E (1)

0
becomes negatively infinite, indicating the divergence of the binding energy. This is a peculiar
feature of the d = 1 exciton. When x0 = 0, other bound states become doubly degenerate for
odd and even parities at finite energies, −E∗

R(n − 1)−2 with n = 2, 3, 4, . . .. These features
suggest that the attractive force between an electron and a hole in d � 1 systems is more
effective than in d � 2 systems [10].

Because the above results are based on the continuum model with the effective-mass
and the envelope-function approximations, the ultraviolet cutoff or the finiteness of the lattice



Quantum states and optical responses of low-dimensional electron–hole systems S3571

Table 1. The subband selection rules in the one-photon-absorption (OPA) process for the arbitrary
polarization direction ε̂ of the incident light.

Exciton dimension, d Arbitrary ε̂

�2 αz − βz = even � 0
�1 αy − βy = even � 0 and αz − βz = even � 0

constant is not taken into account. Nevertheless, enhancement of the excitonic effects is
obvious in lower dimensions.

3.1. One-photon absorption process

The transition probability between the ground state and an exciton state is reflected in the
one-photon absorption (OPA) spectrum. The OPA coefficient of the d-dimensional exciton is
proportional to

W (d)
OPA(ω) ∝ |〈c|ε̂ · p|v〉|2

∑
{α}

∑
{β}

|〈φ{α}|φ{β}〉|2
∑
ν

|�(d)
ν,{α}{β}(reh = 0)|2

× δ(h̄ω − E (d)
gap − E (d)

ν ), (7)

where 〈c|ε̂ ·p|v〉 is the interband-transition dipole matrix element with polarization unit-vector
ε̂ and momentum operator p, and |c〉 (|v〉) is the band wavefunction. Here we assume for d � 1
that φ{α} and φ{β} have decoupled forms such as φ{α} � ∏

i=y,z φαi (i). From this, the subband
selection rules become αz − βz = even � 0 for d � 2, and αy − βy = even � 0 and
αz − βz = even � 0 for d � 1, as summarized in table 1.

The one-photon transition is allowed only for the exciton bound states with an even
parity, |�(d)

ν,{α}{β}(reh = 0)| �= 0 (e.g., the 1s state). The bound states with an odd parity

(|�(d)
ν,{α}{β}(reh = 0)| = 0, e.g., the 2p state) are not reflected in OPA at all. The oscillator

strength ( f (d)ν,{α}{β} ∝ |�(d)
ν,{α}{β}(reh = 0)|2) of the lowest-energy bound state (always even

parity) becomes anomalously large. The oscillator strength of other bound states with an
even parity vanishes completely in the limit of x0 → 0. Thus, in d � 1 the OPA of only
the lowest exciton state is extremely (divergingly) strong in comparison with the other bound
states [11, 12].

Above the band-gap energy (h̄ω � E (d)
gap), the difference in the interband OPAs in d � 2

and d � 1 excitons is more clear7. For the d � 2 systems, the interband absorption is enhanced
due to excitonic effects, while it is reduced for the d � 1 exciton systems. To see this, the
Sommerfeld factor, which is defined as the ratio of the interband OPA rate with excitonic effects
to that without excitonic effects, has been evaluated for d = 2 and d � 1. The Sommerfeld
factor for d = 2 is

S(2)(h̄ω) = eπα2

cosh(πα2)
� 1, (8)

whereα2 = α2(h̄ω) = [2µ(a∗
B)

2(h̄ω− E (2)
gap)]−1/2. The OPA rate at the band edge (h̄ω = E (2)

gap)

is twice as large as that without the excitonic effect, i.e. S(2)(h̄ω = E (2)
gap) = 2. The Sommerfeld

factor for d = 2 is also called the Coulomb ‘enhancement’ factors because of S(2)(h̄ω) � 1.
On the other hand, the Sommerfeld factor for d � 1 is

S(1)(h̄ω; x0) = eπα1

8

∣∣D(2)
0 W (1)

0 − D(1)
0 W (2)

0

∣∣2

|D(1)
0 |2 + |D(2)

0 |2 � 1, (9)

7 The OPA strength is proportional to the joint density of states (JDOS) when no electron–hole Coulomb interaction
is taken into account.
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where α1 = α1(h̄ω) ≡ [2µ(a∗
B)

2(h̄ω − E (1)
gap)]−1/2. Here W ( j)

0 ≡ W ( j)(r̃eh = 2ikx0),
D( j)

0 ≡ dW ( j)(r̃eh)/dr̃eh|r̃eh=2ikx0 , and

W ( j)(reh) ≡ r̃ehe−r̃eh/2�(1 ± iα1)[F(1 + iα1, 2; r̃eh)± G(1 + iα1, 2; r̃eh)], (10)

for j = 1 (2) corresponding to the + (−) sign of the right-hand side. Here the scattering state
of the d � 1 exciton of energy E (1)

k = h̄ω > 0 is characterized by the wavenumber k through
E (1)

k = h̄2k2/2µ. The Sommerfeld factor in d � 1 is less than unity, which means that the
electron–hole Coulomb attraction suppresses the OPA of an allowed interband transition. At
h̄ω = E (1)

gap, i.e. α1 → +∞, the Sommerfeld factor vanishes, S(1)(h̄ω = E (1)
gap; x0) = 0, which

cancels the divergence due to the joint density of states (JDOS) of d = 1 systems. These
particular one-dimensional effects have been observed in experiments [13, 14]. In the limit of
x0 → 0, no interband absorption takes place, i.e. S(1)(h̄ω; x0 = 0) = 0 for all h̄ω � E (1)

gap.

3.2. Two-photon absorption process

In the OPA process, the polarization dependence appears only in the interband matrix element,
|〈c|ε̂ · p|v〉|. Therefore, OPA anisotropy for the polarization directions reflects only that
of the Bloch (band) electrons not of the excitons nor of the subband structures. On the other
hand, the two-photon absorption (TPA) process reflects directly the dimensionality of excitons,
i.e. squeezing of the wavefunction of the exciton’s relative motion itself in a low-dimensional
geometry. We shall now discuss the polarization anisotropy of the TPA.

Consider the situation where the photon energies h̄ω1 and h̄ω2 of incident light beams
are both close to 1

2 E (d)
gap and these two beams have a common polarization vector ε̂. The

complete summation over all the intermediate states is performed by approximating off-
resonant energy denominators as a constant [15]. Contrary to the OPA case, the TPA probability
W (d)

TPA for d-dimensional exciton systems has different forms depending on the polarization
directions [16, 17].

When ε̂ ‖ r‖, the TPA rate is proportional to W (d)
TPA(ω1 + ω2; ε̂ ‖ r̂‖) ∝ |〈c|ε̂ ·

p|v〉|2µ−2
‖ G(d)(ε̂ ‖ r‖), where

G(d)(ε̂ ‖ r‖) = (Lnorm)
d−3

∑
{α}

∑
{β}

∣∣〈φ{α}|φ{β}〉
∣∣2 ∑

ν

∣∣∣∣ ∂

∂reh
�
(d)
ν,{α}{β}(reh)

∣∣∣∣
2

reh=0

× δ(h̄ω1 + h̄ω2 − E (d)
gap − E (d)

ν ), (11)

with Lnorm the normalization length along the r⊥ direction and µ‖ the electron–hole reduced
mass for the motion along r‖ direction. Here we find the subband selection rule: αz − βz =
even � 0 for d � 2 and αi − βi = even � 0 (i = y or z) for d � 1. These are identical with
those in the OPA case. Only the odd-parity states are allowed for the TPA process of ε̂ ‖ r‖
because the derivative of the exciton wavefunction at the origin is nonzero only for odd-parity
states, which are forbidden for the OPA process.

On the other hand, when ε̂ ‖ r⊥, the TPA coefficient is proportional to W (d)
TPA(ω1 +ω2; ε̂ ‖

r⊥) ∝ |〈c|ε̂ · p|v〉|2µ−2
ζ G(d)(ε̂ ‖ r⊥), with

G(d)(ε̂ ‖ r⊥) = (Lnorm)
d−3

∑
αζ

∑
βζ

∣∣∣∣〈φαζ | ∂∂xζ
|φβζ 〉

∣∣∣∣
2 ∑
αζ ′

∑
βζ ′

|〈φαζ ′ |φβζ ′ 〉|2

×
∣∣∣∣∣
∑
ν

�
(d)
ν,{α}{β}(reh = 0)

∣∣∣∣∣
2

δ(h̄ω1 + h̄ω2 − E (d)
gap − E (d)

ν ), (12)

where µζ is the electron–hole reduced mass for the motion along the confinement direction.
For d � 1, ζ is an index specifying a component of r⊥ = (y, z) parallel to the polarization
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Table 2. The subband selection rules in the two-photon-absorption (TPA) process for a polarization
direction ε̂ of the incident lights. For d � 1, ζ is an index specifying an component of r⊥ = (y, z)
parallel to the polarization direction ε̂, while ζ ′ indicates the rest component in r⊥ .

Exciton dimension, d ε̂ ‖ r‖ ε̂ ‖ r⊥

�2 αz − βz = even � 0 αz − βz = odd � ±1

�1 αy − βy = even � 0 αζ − βζ = odd � ±1
and αz − βz = even � 0 and αζ ′ − βζ ′ = even � 0

direction ε̂, while ζ ′ indicates the rest component in r⊥. The subband selection rule for d � 2
is αz − βz = odd � ±1, while for d � 1, αζ − βζ = odd � ±1 for the polarization direction,
and αζ ′ − βζ ′ = even � 0 for the other confinement direction. Only the even-parity states are
allowed for the TPA process of ε̂ ‖ r⊥ because �(d)

ν,{α}{β}(reh = 0) is nonzero only for even-
parity excitons, which are allowed for the OPA process. We find that not only even-parity states
but also odd-parity ones can be detected by TPA with appropriate control of the polarization
direction. These anisotropic TPA characteristics result directly from low-dimensional natures
of the electron–hole relative motion. The subband selection rule is also anisotropic depending
on the polarization direction, as summarized in table 2.

In the regions of continuous spectra (h̄ω1 + h̄ω2 � E (d)
gap), the d � 1 exciton effects

enhance the TPA for ε̂ ‖ x̂ (the unconfinement direction), whereas they reduce the TPA for
ε̂ ‖ x̂ζ (the confinement direction), which is in striking contrast to the higher-dimensional
cases, where the TPA is always enhanced by excitonic effects. As a result, in the case of the
TPA in d = 1, one can observe both the reduction (for ε̂ ‖ x̂) and enhancement (for ε̂ ‖ x̂ζ )
in the same sample simply by rotating the polarization direction. In an intermediate regime
between d � 2 and d � 1, the dimensional crossover effects appear only in the TPA process
(not in the OPA) [18]. These theories can explain experimental results [19, 20].

3.3. Dielectric confinement effect

In determining the effective Coulomb potential in less than two dimensions, we need to include
the dielectric image-charge effect arising from the difference in the dielectric constant between
the material (ε) and the surroundings (ε1). This is a confinement effect of the Coulomb
interaction. If the surrounding materials have a smaller dielectric constant and a larger energy
gap than the relevant material, the electron–hole Coulomb attraction in the relevant material
works very effectively through the surroundings with reduced screening. As a result, the
exciton binding energy is expected to increase much more than in a normal low-dimensional
system without this effect.

We shall consider a d � 2 system with the well width L⊥(|z| � 1
2 L⊥) (its dielectric

constant is ε) [21, 22]. The barrier regions have the dielectric constants, ε1 (ε > ε1). The
electrostatic interaction between two point charges in the d � 2 system is given by

V (2)
image(reh) = −e2

ε

∫
d2k

eik·reh

k sinh(kL⊥ + 2η)

× cosh

[
k

(
L⊥
2

− ze

)
+ η

]
cosh

[
k

(
L⊥
2

+ zh

)
+ η

]
. (13)

Here k = |k| =
√

k2
x + k2

y, η = 1
2 ln[(ε + ε1)/(ε − ε1)], reh = (xeh, yeh) = (xe − xh, ye − yh).

(i) When the electron is close to the hole (r2 ≡ |reh|2 + z2
eh � L2

⊥), the interaction is identical
to that in bulk.
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(ii) When the electron is far from the hole (|reh| � (ε/ε1)L⊥), it is determined by ε1 only,
i.e. V (2)

image → −(e2/ε1)|reh|−1.

(iii) When ε � ε1, V (2)
image → −2e2/(εL⊥){ln[(ε/ε1)(L⊥/|reh|)] − γ } in the region of

L⊥ � |reh| � (ε/ε1)L⊥. Here γ = 0.577.

In a square wire (d � 1) structure (|y| � 1
2 L⊥, |z| � 1

2 L⊥), the electron–hole interaction
including the dielectric image-charge effect is derived as [9]

U (1)
image(re, rh) = −e2

ε

∞∑
m=−∞

∞∑
n=−∞

q |m|+|n| [
x2

eh + y2
m + z2

n

]−1/2
, (14)

where q ≡ (ε − ε1)/(ε + ε1), ym ≡ ye − mL⊥ − (−1)m yh, and zn ≡ ze − nL⊥ − (−1)nzh.
After averaging over ye, ze, yh and zh on the cross-section of the wire, we have

V (1)
image(xeh) = −4E∗

R
a∗

B

L⊥

∫ ∞

0
dky

∫ ∞

0
dkz F(ky)F(kz)

exp
[−πxeh

√
k2

y + k2
z /L⊥

]
√

k2
y + k2

z

, (15)

where

F(k) = 1 + 2q(1 − q2) cos(πk)− q4

1 − 2q2 cos(2πk) + q4
f (k). (16)

Here f (k) is given using j0(x) ≡ sin x/x as

f (k) = j 2
0

(
π

2
k

)
+ j0

(
π

2
(k − 2)

)
j0

(
π

2
k

)
+ j0

(
π

2
(k + 2)

)
j0

(
π

2
k

)

+
1

4
j 2
0

(
π

2
(k − 2)

)
+

1

4
j 2
0

(
π

2
(k + 2)

)
+

1

2
j0

(
π

2
(k − 2)

)
j0

(
π

2
(k + 2)

)
.

(17)

The calculated potential with the dielectric image-charge effects V (1)
image(xeh) can be

well fitted by V (1)(xeh; x0). As the ratio ε/ε1 increases, the attractive potential becomes
more long-ranged and is enhanced for all regions of xeh over the bare Coulomb potential
V (1)(xeh) = −(e2/ε)|xeh|−1. Therefore, the peculiar features of the d � 1 excitons would be
more pronounced by the dielectric image-charge effect.

4. One-dimensional excitonic molecule

The two-exciton excited state in semiconductors is related to the excitonic molecule, which
has been investigated for a long time [23]. In three dimensions, the binding energy of the
excitonic molecule was shown to be always positive [24]. In this section, we shall overview
theories of an excitonic molecule (EM) in d = 1, and the recent status of the study on excitonic
nonlinearities in semiconductors is reviewed.

First, we introduce a theory of an excitonic molecule in d � 1 with the Heitler–London
approximation [8]. Here two Wannier excitons are assumed to exist in a continuum model of
a d � 1 semiconductor. The one-dimensional effective Hamiltonian is

Ĥ (1)
EM = − ∂2

∂ξ2
1

− ∂2

∂ξ2
2

+
2µ

m∗
h

(
∂

∂ξ1
− ∂

∂ξ2

)
∂

∂xhh
− 2µ

m∗
h

∂2

∂x2
hh

− µ

2(m∗
e + m∗

h)

∂2

∂X2
+ 2U (1)(ξ1, ξ2, xhh), (18)
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where m∗
e (m∗

h) is the effective mass of an electron (a hole), the coordinates are defined as
ξ1 ≡ xe1 − xh1, ξ2 ≡ xe2 − xh2, xhh ≡ xh1 − xh2, and X ≡ [2(m∗

e + m∗
h)]

−1[m∗
e(xe1 + xe2) +

m∗
h(xh1 + xh2)], and the potential U (1) is given as

U (1)(ξ1, ξ2, xhh) = V (1)(ξ1 − ξ2 + xhh; x0) + V (1)(xhh; x0)− V (1)(ξ1; x0)

− V (1)(ξ2; x0)− V (1)(ξ1 + xhh; x0)− V (1)(ξ2 − xhh; x0). (19)

Here V (1)(x; x0) is the regularized Coulomb potential in d � 1. Since the polarization effect
(deformation of the electron–hole relative wavefunction of an exciton due to the other exciton)
is neglected, the problem of the excitonic molecule is reduced to that of the hole–hole relative
motion. The binding energy of the excitonic molecule in d � 1, E (1)

EM, is given by solving the
eigenvalue problem for the hole–hole relative wavefunction ψ(1)hh , i.e.[

−2µ

m∗
h

∂2

∂x2
hh

+ V (1)
hole(xhh)

]
ψ
(1)
hh = −E (1)

EMψ
(1)
hh . (20)

Here V (1)
hole(xhh) is the effective hole potential [8]:

V (1)
hole(xhh) = −2E (1)

0 +
∫ ∞

−∞
dξ1

∫ ∞

−∞
dξ2�

(1)
corr(ξ1, ξ2, xhh)Ĥ

(1)
EM�

(1)
corr(ξ1, ξ2, xhh), (21)

where E (1)
0 is the ground-state exciton energy in d � 1, and an eigenfunction of Ĥ (1)

EM is
assumed to beψ(1)(ξ1, ξ2, xhh) = φ

(1)
hh (|xhh|)�(1)

corr(ξ1, ξ2, xhh). Here�(1)
corr describes the exciton

correlations

�(1)
corr(ξ1, ξ2, xhh) = N(xhh)

[
�(1)
ν (ξ1)�

(1)
ν (ξ2) +�(1)

ν (ξ1 + xhh)�
(1)
ν (ξ2 − xhh)

]
(22)

with the normalization function N(xhh), where�(1)
ν is the relative wavefunction of an exciton

in d � 1 given in equation (4). According to numerical calculation, E (1)
EM is more than five

times larger than E (3)
EM � 0.04E∗

R for bulk GaAs. Thus, an excitonic molecule becomes more
stable in lower-dimensional systems, similar to the exciton case.

Conventionally, an excitonic molecule is regarded as a bound state of two (Wannier)
excitons. More rigorously, however, we should solve a four-fermion problem taking into full
account the correlation effect on the length scale of a lattice constant. In other words, a usual
bosonic picture of the excitonic molecule cannot capture the binding mechanism quantitatively.
We need to look into the way in which two electrons and two holes are reshuffled. In addition, in
lower dimensions, the electronic correlation effects lead to the crossover between the Frenkel-
type EM and the Wannier-type EM. In order to treat this crossover consistently, both a lattice
model and the long-range interaction are required for the description of an EM. We solved the
four-fermion model of an EM by exact diagonalization on a finite d = 1 lattice [25]. The EM
Hamiltonian employed there is

Ĥ(1)
EM = −te

∑
iσ

(ĉ†
i+1,σ ĉiσ + h.c.)− th

∑
iσ

(d̂†
i+1,σ d̂iσ + h.c.) + E0

∑
iσ

d̂†
iσ d̂iσ

−
∑
i jσσ ′

Ui j ĉ†
iσ ĉiσ d̂†

jσ ′ d̂ jσ ′ +
∑
i jσσ ′

Vi j (ĉ
†
iσ ĉiσ ĉ†

jσ ′ ĉ jσ ′ + d̂†
iσ d̂iσ d̂†

jσ ′ d̂ jσ ′)

− Vdipole

∑
iσ

(ĉ†
i+1,σ d̂†

i+1,−σ d̂i,−σ ĉiσ + h.c.), (23)

where ĉ†
iσ (d̂†

iσ ) creates an electron in the conduction band (a hole in the valence band) with
spin σ at site i , te (th) is the transfer energy of electrons (holes), and E0 is the energy
difference between the two orbitals from which conduction and valence bands arise. The
attractive electron–hole interaction between the sites i and j is denoted by Ui j , while Vi j
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represents the repulsive electron–electron and hole–hole interactions. The last term describes
the transfer of an electron–hole pair from site to site. We assumed that Ui j = U0 for i = j ,
Ui j = U1/|i − j | for i �= j and Vi j = V0 for i = j , Vi j = V1/|i − j | for i �= j , where
physically U0 > U1 � 0, V0 > V1 � 0 and V1 = U1.

The numerical diagonalization of the Hamiltonian has been carried out for a finite d = 1
system with the periodic boundary condition. We found that the Heitler–London scheme gives
only about half the exact result for the whole range of the transfer energies. This discrepancy
indicates that the correlation effect is of significance in d = 1 systems. The Heitler–London
approximation is expected to give reasonable results only when the electron–hole relative
motion is spatially extended. We stress, however, that in d = 1 systems the correlated motion
of electrons and holes over the length scale of a lattice constant is essential even in the weak-
coupling case. Moreover, continuum models for an EM holds only in the weak-coupling
regime, where the hole–hole correlation is peaked at a finite distance larger than a lattice
constant, while it decays faster for the strong-coupling regime where an EM is more compact
in space and its size is of an atomic order. In d = 1, the coupling among particles becomes
essentially stronger in comparison with that in higher dimensions. Therefore, the lattice model
is suitable for description of the elementary excitations in d = 1 such as a d = 1 EM in the
whole range of the electron–hole coupling constant. Other physical quantities of the d = 1
EM are given in [25].

In some d � 1 materials, a novel quasiparticle called an ‘excitonic n-string’ [26] can be
formed by n electrons and n holes with small integer n. But in general, polyexcitons of n > 2
become unstable in higher dimensions. ‘Charged excitons’ composed of two electrons and
one hole (or one electron and two holes) are also predicted and observed [27]. Condensation
of charge-transfer excitons is also attracting attention in terms of the photoinduced phase
transitions [28, 29].

5. Optical nonlinearity due to excitonic correlations

Recently, it was recognized that the χ(3) process is sensitive to details of the two-exciton
state. In this section, we shall give an overview of the recent status of the study on excitonic
nonlinearities in semiconductors. Nonlinear optical responses have been studied for a long
time, also in relation to photonic device application and laser operation. In particular, the
χ(3) process is of special importance because it is the lowest-order nonlinear effect in ordinary
materials. When the energy of the incident light is tuned at the 1s exciton level, the nonlinearity
results from some characteristics of the 1s excitons. Relations between the χ(3) nonlinearity
and the interaction between the 1s excitons are investigated theoretically [30]. The aims
of theoretical studies on optical nonlinearity in semiconductors is to clarify spatiotemporal
dynamics of excitons (or electrons and holes) in photoexcited semiconductors and to predict
temporal or spectral variations of induced nonlinear polarizations. For these purposes, there
are two types of approach: the fermion-picture treatment where electrons and holes play their
individual roles and the boson-picture treatment in which a pair of an electron and a hole is
regarded as a composite boson.

5.1. Fermion-picture treatment

In the fermionic treatment, we start with two types of fermions considering separately electrons
excited in a conduction band and holes in a valence band. The populations and the induced
polarization (interband dipole moment) are traced with the Heisenberg equations of motion.
A typical example of this treatment is the semiconductor Bloch equations (SEBs) [31, 32]
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in momentum space. When we confine ourselves to the interband transitions neglecting
intraband transitions, semiconductors are described as an ensemble of two-level atoms with
inhomogeneous broadening. In analogy with the optical Bloch equations describing coherent
optical transient phenomena, the equations of motion for three macroscopically averaged
quantities are

dne
k(t)

dt
= −2 Im[�k p∗

k] − �e
kne

k,

dnh
k(t)

dt
= −2 Im[�k p∗

k] − �h
knh

k,

d pk(t)

dt
= −i[ε̃e

k + ε̃h
k]pk − i(ne

k + nh
k − 1)�k − γk pk,

(24)

where ne
k(t) ≡ 〈∑σ ĉ†

kσ ĉkσ 〉 (nh
k(t) ≡ 〈∑σ d̂†

kσ d̂kσ 〉) is the Heisenberg representation of
the mean density of the conduction electrons (valence holes) with momentum k at time t
and the interband polarization pk(t) ≡ 〈∑σ ĉkσ d̂kσ 〉. Here ĉ†

kσ (d̂†
kσ ) creates an electron

in the conduction band (a hole in the valence band) with momentum k and spin σ , ε̃νk ≡
ενk − ∑

q V|k−q| nνq is the single-particle energy renormalized by the Coulomb interaction Vq

between an electron (ν = e) and a hole (ν = h), �k ≡ dcvE(t) +
∑

q �=k V|k−q| pq is the
generalized Rabi frequency for the incident light field E(t), dcv is the interband dipole matrix
element and �νk , γk are the phenomenological relaxation constants.

In order to obtain a closed form of coupled equations, the Hartree–Fock (mean-field)
approximation was employed, where the four (or higher) operator terms in the Heisenberg
equations of motion are split into products of two-operator terms; the densities and the interband
polarization. This is valid only for the case of high-density and homogeneous excitations.
However, since the single exciton state of the zero centre-of-mass momentum K = 0 can
be described by the SBEs, it has been frequently used to analyse experimental results in
bulk semiconductors even for the weak-excitation case. Nevertheless, we have to note that
contribution from an excitonic molecule (two-exciton states) is completely neglected in the
SBEs. This is a fatal shortcoming of this formulation for the description of the χ(3) process
close to the 1s exciton resonance [33, 34]. To overcome this, other fermion-picture theories,
e.g., the real-space density matrix theory taking into account higher-order correlations [35] or
the Green-function formalism are proposed and progressed.

5.2. Boson-picture treatment

When we consider the excitonic χ(3) nonlinearity, we need to consider only the subspace
containing up to two-electron excited states in the intermediate-state summation for
perturbation calculations. In such a rather weak excitation regime, the screening effect is
still weak, then an electron and a hole tend to make a pair (an exciton bound state) with each
other. In the boson-picture treatment, a pair of an electron and a hole is considered as a basis,
and it is treated as a (quasi)boson.

Kuwata-Gonokami et al carried out a degenerate four-wave mixing experiment near the
1s exciton resonance with a GaAs quantum well in a high-Q cavity under circularly polarized
light irradiation. To explain their experimental results, they proposed an elastic-scattering
model of two cavity polaritons [36]. The cavity polariton is a hybridized state of a 1s exciton
and a photon in the cavity, and is regarded as a (quasi)boson. Such a phenomenological model
is called the weakly interacting boson (WIB) model. In the WIB model, we first assume there
is a pure-boson describing a quasiparticle in an excited state of the material, whose operators
are written as B̂kσ and B̂†

kσ with an internal degree of freedom (helicity or total angular
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momentum) σ = ±1. They are assumed to satisfy the pure-boson commutation relation:
[B̂kσ , B̂†

k′σ ′] = δkk′δσσ ′ . Usually, this pure-boson describes a 1s exciton in an approximate
sense. Only three types of interaction (whose momentum dependence is neglected) between
bosons and photons are required:

(a) an attractive interaction W between bosons with different total angular momentum,
(b) a repulsive interaction R between bosons with an identical total angular momentum, and
(c) the phase-space filling effect G resulting from Pauli’s exclusion principle.

The WIB Hamiltonian is ĤWIB = ĤWIB
linear + ĤWIB

nonlinear with

ĤWIB
linear =

∑
kσ

ωkâ†
kσ âkσ +

∑
kσ

�k B̂†
kσ B̂kσ + g

∑
kσ

(
B̂†

kσ âkσ + h.c.
)
, (25)

ĤWIB
nonlinear = W

∑
kk′

∑
q �=0

B̂†
k+q,+1 B̂†

k′−q,−1 B̂k′,−1 B̂k,+1 + R
∑
kk′σ

∑
q �=0

B̂†
k+q,σ B̂†

k′−q,σ B̂k′σ B̂kσ

− G
∑
kk′σ

∑
q �=0

(
B̂†

k+q,σ B̂†
k′−q,σ B̂k′σ âkσ + h.c.

)
, (26)

where â†
kσ and âkσ are the operators of a photon of momentum k and angular momentum

(circular polarization) σ = ±1, and ωk (�k) is the energy dispersion of a photon (a boson).
Kuwata-Gonokami et al calculated the matrix-elements of the cavity-polariton scatterings and
found that this simple phenomenology can reproduce all the experimental results, in particular,
the polarization dependence. Ratios among W , R and G can be determined by comparing with
the experiments. This shows that the bosonic treatments are thought to be an effective tool for
the description of excitonic nonlinearities.

We here note that the 1s Wannier exciton is not a pure-boson but a quasiboson. Its
creation operator is defined through b̂†

Kµν ≡ ∑
k f (2)(k) ĉ†

αK+k,µd̂†
βK−k,ν , where µ (ν) is a

quantum number of the total angular momentum of an electron (a hole), α = m∗
e/(m

∗
e + m∗

h),

β = m∗
h/(m

∗
e + m∗

h), and f (2)(k) = (
√

2π/L)
(
1 + k2/4

)−3/2
describes the Fourier transform

of the electron–hole relative wavefunction in d = 2. This exciton operator satisfies the
commutation relation:

[b̂K1µ1ν1 , b̂†
K2µ2ν2

] = δK1K2δµ1µ2δν1ν2 − ξ̂ (K1µ1ν1|K2µ2ν2), (27)

where

ξ̂ (K1µ1ν1|K2µ2ν2) = δν1ν2

∑
k

f (2)(k) f (2)(αK2 − αK1 + k) ĉ†
βK2−βK1+αK2+k,µ2

ĉαK1+k,µ1

+ δµ1µ2

∑
k

f (2)(k) f (2)(αK1 − αK2 + k) d̂†
αK2−αK1+βK1−k,ν2

d̂βK1−k,ν1 . (28)

The second term ξ̂ of the right-hand side describes the deviation from the pure-
boson commutation relation. Note here that two single-exciton states are orthogonal:
〈0|b̂K1µ1ν1 b̂†

K2µ2ν2
|0〉 = δK1K2δµ1µ2δν1ν2 , while that of two two-exciton states is no longer

orthogonal:

〈0|b̂K4µ4ν4 b̂K3µ3ν3 b̂†
K1µ1ν1

b̂†
K2µ2ν2

|0〉
= δK1K3δµ1µ3δν1ν3δK2K4δµ2µ4δν2ν4 + δK1K4δµ1µ4δν1ν4δK2K3δµ2µ3δν2ν3

− δK1+K2,K3+K4

(
δµ1µ3δν1ν4δµ2µ4δν2ν3 + δµ1µ4δν1ν3δµ2µ3δν2ν4

)
× F(α(K1 − K3), β(K2 − K3)), (29)

where |0〉 is the ground state and F(K,K ′) ≡ ∑
k f (2)(K + k) f (2)(K ′ + k) f (2)(k) f (2)(K +

K ′ + k). The quasi-boson nature and the nonorthogonality of two two-exciton states are key
points for formulating new boson-picture theories of few-exciton systems.
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Before the above phenomenological WIB model, there were many theoretical trials to
describe many-exciton systems in terms of bosons in the study of the exciton Bose–Einstein
condensation [37, 38]. Recently, theoreticians have been interested in how to bosonize a few
exciton systems with the spin degrees of freedom, how to evaluate interactions among the
bosons and photons [39], and how to cope with the deviation of the pure-boson commutation
relations. Inoue et al approximated the 1s Wannier exciton in d = 2 as a pure-boson to derive
the attractive (W ) and repulsive (R) interactions between the bosons depending on the total
angular momentum [40]. This means that the phenomenological cavity-polariton model gets
its basis from a microscopic viewpoint. Recently, Takayama et al investigated numerically a
scattering problem of two excitons [41], and Combescot et al proposed a new treatment of the
exciton bosonization [42]. We note here that the validity and limitations of the boson-picture
treatment should always be recognized; for example, the decay processes and the detuning
effects are hard to be incorporated there.

There are several schemes for bosonization: the Usui transformation [43] for
quasibosons [44], the Marumori-mapping technique [45], and an exact mapping to a pure-
boson space [46, 47]. Based on these works, Okumura and Ogawa derived a bosonized
Hamiltonian describing two-exciton correlation of semiconductor-photon coupled systems
with a new bosonization method, which takes into full account an effect of deviation of the
excitons from ideal bosons [48]. This deviation effect stems from the fact that the excitons are
composite particles, whose character appears clearly in the case where the excitons overlap with
each other. They call this effect a ‘composite-particle effect’ (CPE). The derived bosonized
Hamiltonian describes boson–boson interaction and boson–photon nonlinear coupling, and
includes the results of the previous works as low-order terms of the CPE. They showed that the
CPE brings about enhancement of exciton–exciton scattering strength and qualitative change
of photo-transition amplitude. It is also shown that the Hamiltonian describes two-exciton
bound and scattering states, both of which play important roles in the four-wave-mixing
processes [49]. Moreover, they clarified how deformation of a 1s type exciton wavefunction
affects the four-wave-mixing signals near 1s-exciton resonance in a quantum well [49].

Here we make a comment on the bosonization. In the ‘exciton bosonization’, two fermions
in different bands, an electron in a conduction band and a hole in a valence band across the
energy gap, are simultaneously mapped to a boson. In the low-density limit of excitons, the
bosonic excitons satisfy the pure-boson commutation relation, while boson approximation
becomes worse in the high-density limit, as shown in equation (27). On the other hand, as
will be shown in the following sections, another bosonization is frequently used to describe
low-energy excitations near the Fermi level in degenerate electron systems [50, 51]. A pair of
a particle and a vacancy across the Fermi level is treated as a long-wavelength boson, i.e. two
fermions in the same band are mapped to a boson. In other words, the charge and spin density
fluctuations of an electron gas (or a hole gas) are quantized to be bosons. In particular, the
low-energy bosons near the Fermi level in d = 1 satisfy the pure-boson commutation relation,
thus they are called the Tomonaga bosons [52, 53]. With the use of this property, one of the
exactly solvable quantum models, the Tomonaga–Luttinger (TL) model, has been proposed,
in which interacting fermions can be described as independent bosons [52].

6. Quantum orders in one-dimensional electron–hole systems

We consider a high-density electron–hole system in d = 1 under irradiation by an intense
light pulse. What will happen as the number of excitons are increased in semiconductors is a
long-standing problem in which both the quantum many-body effects and the nonequilibrium
characters should be considered [54, 55]. Since the mean-field approximation is invalid in low
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dimensions as mentioned earlier, here we shall make use of the exactly solvable models to
avoid ambiguities due to some approximations.

With irradiation of an intense laser pulse to undoped semiconducting wires,we can explore
the many-body effects in a d = 1 high-density electron–hole system, whose quasiequilibrium
states are treated as a two-band TL liquid. Densities of electrons (in the conduction band)
and holes (in the valence band) are assumed to be equal to each other, both of which are
high enough so that the Fermi points are well-defined in both bands. We further assume that
this system is in quasiequilibrium within a radiative lifetime (rigid Fermi-sea picture) [56].
Here we concentrate on the d = 1 high-density electron–hole system with the same Fermi
wavevector kF for both the conduction and valence bands.

In this system, low-energy excitations near each quasi-Fermi level are important for
quantum orderings and their dynamical responses. Then the bosonization method is used to
treat the collective excitations of the degenerate electrons and holes. To this end, we linearize
the dispersions near the Fermi points with the Fermi velocities of the conduction and valence
bands, ve

F ∝ (m∗
e)

−1 and vh
F ∝ (m∗

h)
−1. Each band consists of two branches corresponding to

the right-moving ( j = 1) and the left-moving ( j = 2) particles. The interparticle interaction
matrix element is assumed to be spin-independent and parameterized to the nine interaction
matrix elements: ge

i , gh
i and geh

i for i = 1, 2, 4. We study here the forward-scattering model,
which includes essentially only intrabranch interactions, g2 (ge

2, gh
2 and geh

2 ) and is solved
exactly.

One advantage of the bosonization method comes from the fact that electron (or hole)
field operators can be written in terms of the phase fields, or equivalently, boson creation and
annihilation operators, e.g.,

ψ̂e
1σ (x) = (2πα)−1/2eikF x exp

[
i

2
{θ̂e(x) + θ̂−

e (x) + σ [φ̂e(x) + φ̂−
e (x)]} + iϕ̂e

1σ

]
, (30)

ψ̂e
2σ (x) = (2πα)−1/2e−ikF x exp

[
− i

2
{θ̂e(x)− θ̂−

e (x) + σ [φ̂e(x)− φ̂−
e (x)]} + iϕ̂e

2σ

]
, (31)

for the electron fields of branches j = 1 and 2, respectively, where α is a cutoff and ϕ̂e
jσ is

necessary for ensuring the anticommutation relation of ψ̂e
jσ with different j and σ . Using the

phase variables, we obtain a phase Hamiltonian of the two-band TL liquid: Ĥ ≡ Ĥcharge +Ĥspin,
where

Ĥcharge =
∫

dx {Ae P̂2
e (x) + Ce[∇ θ̂e(x)]2 + Ah P̂2

h (x) + Ch[∇ θ̂h(x)]2

+ 2Ceh∇ θ̂e(x)∇ θ̂h(x)}, (32)

Ĥspin =
∫

dx {Be�̂
2
e(x) + De[∇φ̂e(x)]

2 + Bh�̂
2
h(x) + Dh[∇φ̂h(x)]

2}. (33)

Here θ̂e(x) [θ̂h(x)] is the charge phase of the conduction [valence] electrons, whose conjugate
momentum is P̂e(x) ≡ −(4π)−1∂θ̂−

e (x)/∂x [P̂h(x) ≡ −(4π)−1∂θ̂−
h (x)/∂x], while φ̂e(x)

[φ̂h(x)] is the spin phase, whose conjugate momentum is �̂e(x) ≡ −(4π)−1∂φ̂−
e (x)/∂x

[�̂h(x) ≡ −(4π)−1∂φ̂−
h (x)/∂x]. Coefficients are given by Aν ≡ 2π(v̄νF − gν2), Bν ≡ 2πv̄νF,

Cν ≡ (v̄νF + gν2)/8π , Dν ≡ v̄νF/8π and Ceh ≡ geh
2 /4π , where ν = e or h and v̄νF ≡ vνF + gν4 is the

normalized Fermi velocity. The charge part of the forward-scattering Hamiltonian, Ĥcharge, is
diagonalized by the unitary transformation: (θ̂e, θ̂h) → (θ̂1, θ̂2) via[

θ̂e

θ̂h

]
=

[√
Ae cos� −√

Ae sin�√
Ah sin�

√
Ah cos�

] [
θ̂1

θ̂2

]
, (34)
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with � being given by tan 2� ≡ 2Ceh
√

Ae Ah/ (AeCe − AhCh). Consequently, the
diagonalized forward-scattering Hamiltonian becomes Ĥforward = ∫

dx
∑

i=1,2{P̂2
i (x) +

[v(i)charge∇ θ̂i(x)]2} + Ĥspin, where P̂i is the conjugate momentum for θ̂i (Ĥspin is already

diagonalized). We find that the motions of four phases, θ̂1, θ̂2, φ̂e and φ̂h, are described
by massless acoustic modes, which have linear dispersions in their excitation spectra. The
velocities of the transformed charge phases, θ̂1 and θ̂2, are given by

v
(i)
charge = {

2(AeCe + AhCh)± 2[(AeCe − AhCh)
2 + 4C2

eh Ae Ah]1/2}1/2
, (35)

respectively, where i = 1 (2) corresponds to the + (−) sign of the right-hand side. On the
other hand, velocities of the spin phases, φ̂e and φ̂h, are ve

F and vh
F, respectively: vνspin = vνF.

In d = 1 quantum many-particle systems, the competition among various Fermi-surface
instabilities occurs through quantum fluctuations even at zero temperature. There are sixteen
possible order parameters, Ô(x). All the correlation functions, 〈Ô(x, τ ) Ô†(0, 0)〉, behave
like [max (x, τ )]−η for large x and large imaginary time τ . The exponent η for each order
parameter is given in [57]. The phase diagram of the quasi-thermal-equilibrium state was
given, which is divided into following four regions.

(a) Exciton Bose–Einstein-condensate phase. When the repulsive interaction between
conduction electrons and valence ones is strong (positive and large geh

2 ), i.e. the strong
attraction between electrons and holes, the exciton Bose–Einstein condensate (exciton
BEC) at K = 0 predominates. Spin-singlet and triplet exciton Bose condensation are
degenerate in our spin-independent forward-scattering model. The exciton density wave
at K = ±2kF cannot prevail in the whole plane.

(b) Density-wave phase. When the repulsion between the electrons within each band is strong
(positive and large ge

2 or gh
2), the charge-density wave (CDW) and the spin-density wave

(SDW) predominate. The valence-band electrons (i.e. holes) with heavier mass have the
stronger tendency toward ordering. When the velocity ratio |vh

F/v
e
F| is decreased from

unity, the CDW and SDW region extends and invades the exciton BEC region.
(c) Ordinary superconductivity phase. The attractive interactions, i.e. negative g2, yield

conventional superconductivity (SC). The negative gh
2 results in intraband pairing with

zero total momentum K = 0. The valence-band electrons with heavier mass have the
stronger tendency toward ordering.

(d) Unconventional superconductivity phase. On the other hand, the negative geh
2 causes

interband Cooper pairing at K = ±2kF. This unconventional superconductivity is a
peculiar feature of the d = 1 system. Singlet and triplet SCs are degenerate in both the
above cases.

Recently, we have extended the above model to take into account the long-range Coulomb
interaction. The long-range Coulomb interaction enhances the quantum correlation of
biexciton formation. That is, the biexciton solid (crystal) or liquid is the most favourable
order at zero temperature in d = 1. Effects of the electron–hole backward scattering are also
re-examined with the self-consistent harmonic approximation and the renormalization-group
method. We found that the biexciton solid (crystal) is formed when the electron–hole backward
scattering coexists with the forward scattering. Thus, in realistic one-dimensional electron–
hole systems, biexciton solid and liquid orders are of particular importance, resulting in the
absence of the exciton Mott transition in d = 1. Details will be reported elsewhere [58].

We shall discuss the optical absorption spectrum of the degenerate electron–hole
system in d = 1 [59]. The absorption spectrum, WOPA(ω), is related to the Fourier
transform of the correlation function, 〈P̂(t)P̂†(0)〉, where the polarization P̂ (namely the
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dipole operator) is given by P̂(t) = |M| ∫ dx
∑

σ ψ̂
e†
σ (x, t)ψ̂h

σ (x, t)eiE0t + h.c., where
ψ̂νσ (x, t) = exp[iĤt]ψ̂νσ (x) exp[−iĤt] is the Heisenberg representation of the field operator
(ψ̂νσ = ψ̂ν1σ + ψ̂ν2σ ), M is an interband matrix element (assumed to be constant), and
E0 is the energy of the absorption and emission edge in the single-electron picture. The
correlation function of the dipole operator contains the correlation function CSEBC(t) ≡
〈ÔSEBC(x, t) Ô†

SEBC(0, 0)〉 of the order parameter describing the spin-singlet exciton BEC,
ÔSEBC(x) ≡ ∑

j=1,2

∑
σ ψ̂

e†
jσ (x)ψ̂

h
jσ (x). For large t , the correlation function behaves like

CSEBC(t) ∼ t−ηSEBC . This means that the optical spectrum shows the power-law singularity
like WOPA(ω) ∼ (h̄ω− EF)

β�(h̄ω− EF) in the vicinity of EF, where EF is the absorption-edge
energy and β is the critical exponent: β = ηSEBC − 2 = βex + βc−oc + βv−oc, where

βex = −π[v(1)charge − v
(2)
charge]

2
√

Ae Ah

[
1 +

Ae Ah

4π2v
(1)
chargev

(2)
charge

]
sin 2�, (36)

βc−oc = Ahs1

8πv(1)chargev
(2)
charge

+
πs2

2Ah
− 1

2
, (37)

βv−oc = Aes2

8πv(1)chargev
(2)
charge

+
πs1

2Ae
− 1

2
. (38)

Here si ≡ 1
2 [v(1)charge + v(2)charge ± (v

(1)
charge − v

(2)
charge) cos 2�] with i = 1 (2) corresponding to the

+ (−) sign. This power-law anomaly in optical spectra near an edge energy is one of the FESs.
We stress that the FES exponent, β, is determined by the correlation exponent, ηSEBC,

of the order parameter describing the singlet-exciton BEC. Roughly speaking, the divergent
edge spectrum (corresponding to β < 0) can be observed when the electron–hole interaction is
attractive (geh

2 > 0 and geh
4 > 0), and rather weak electron–electron and hole–hole correlations

occur. When the excitons lie completely at the condensation state at zero temperature, an optical
spectrum is expected to show a δ-function-like peak if we can ignore the quantum fluctuations.
Actually, however, quantum fluctuation can never be neglected in d = 1 systems and it tends to
destroy the exciton condensation. Consequently, the δ-function-like peak spectrum vanishes
and is replaced by the power-law peak, which is really the FES and is a remnant of the exciton
BEC. In this sense, the FES results from a fluctuating condensed state of many d = 1 excitons.
Effects of the randomness were discussed in [57, 59].

7. Gas–liquid phase separation in finite-lifetime systems

Phase separation is the cooperative, nonequilibrium phenomenon that systems of interacting
particles change macroscopically. It can also occur in systems of the excited state at finite
temperature, for example, in the electron–hole system as the formation of the electron–
hole droplet (liquid) in an electron–hole plasma (gas). A characteristic feature of this
electron–hole system is that the constituent particles (electrons and holes) have finite lifetime.
Recently, dynamics of this phase separation or the spinodal decomposition has been observed
experimentally in photoexcited semiconductors [60, 61]. So we will study the phase separation
dynamics in systems of unstable particles created by the external field assuming the particles are
classical. Sugakov and the present author extended the Langer, Bar-on and Miller (LBM) theory
into finite lifetime systems, in which particles have creation and annihilation processes [62–
64]. Based on this extension, we formulated the theory based on the coarse-grained lattice gas
model and take into account the creation and annihilation processes of particles [65].

In a study of the phase separation, the particle density is often used as the order parameters.
So, in our theory, the space is divided into many cells. We assumed that particles are distributed
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in one cell and that there is an upper limit N of the intracell particle number. After this coarse-
graining procedure with cells, the coarse-grained Hamiltonian was introduced;

H = − 1
2

∑
i

∑
j ( �=i)

J|i− j |ni n j − K
∑

i

n2
i . (39)

The interparticle interaction is divided into two parts. One is the long-range intercell interaction
J|i− j | between two different cells. Another is the short-range intracell interaction K within
only one cell. The order parameter is the intracell particle number ni , which is continuous,
0 � ni � N . Moreover we introduce two parameters for the intercell interaction J|i− j |; the
strength J0 ≡ ∑

j ( �=i) J|i− j | and the range R ≡ 1√
J0

[
∑

j ( �=i)(r j − ri)
2 J|i− j |]1/2.

The temporal development of a system is described by two physical quantities. One is
the single-point distribution function; P(1)(nα, t) ≡ ∫ ∏

i( �=α) dni P(n1, . . . , nα, . . . , nN , t).
This can be interpreted as the distribution function of the intracell particle number. Another
is the dynamical structure factor; S(k, t) ≡ ∑

α exp[−ik · (rα − rβ)][〈nαnβ〉 − 〈n2〉(t)].
This is concerned directly with the spectrum of the light scattering. With the use of Binder’s
master equation method and the LBM approximation, we derived the closed-form coupled
equation describing the temporal development of P(1)(n, t) and S(k, t). Processes of the
particle creation and annihilation were taken into account as the competition between the
creation due to the external creation rate y(t) and the decay due to the finite lifetime τ .

We investigated analytically effects of the finite lifetime for the phase separation dynamics
in the early stages with the linear approximation. We define the fluctuation modes of the
intracell particle number as nk(t) ≡ 〈n〉δ(k) + C exp[�kt]. The second term is the fluctuation
from the uniform density state. �k is called the Lyapunov spectrum. If �k > 0, the fluctuation
modes with the wavenumber k can grow, but if �k < 0, the fluctuation modes decay. In the
linear approximation, it can be evaluated as

�k ∝ −Ak2

[
k2 +

2

R2TC
(T − TC)

]
− 1

τ
(40)

with a positive constant A and the critical temperature TC ≡ N
4 (J0+2k). Thus, the finite lifetime

(τ < ∞) makes �k smaller. We consider the steady creation case when the creation rate is
set by y(t) = 〈n〉/τ = constant, so that the mean intracell particle number becomes constant
〈n〉 by the competition with the finite lifetime τ . The system is isotropic and translational
symmetric, so the wavenumber k can be replaced by its amplitude k ≡ |k|. We can define the
critical wavenumber as the boundary wavenumber between increase [�k > 0] and decrease
[�k < 0] of the fluctuation modes. In the case with creation [y(t) = constant] and annihilation
[τ = finite], two critical wavenumbers can be defined; the lower critical wavenumber k(1)C and
the upper critical wavenumber k(2)C . Due to the effect of the finite lifetime, the lower critical
wavenumber k(1)C newly appears and the growth of the fluctuation modes with the wavelength
k−1 > [k(1)C ]−1 is restrained.

Numerical results are explained here. We consider the steady creation case when
〈n〉 = constant and y(t) = 〈n〉/τ = constant. In the initial state, the particle density is
distributed uniformly. So P(1)(n, t = 0) is Gaussian with the variance 0.002 25, in which the
thermal fluctuation is also considered, and S(k, t = 0) = 0. The quantities are normalized by
the following units; N for the particle number, the inverse of the cell size a−1

0 for wavenumber,
the shortest time of the particle transfer between neighbouring cells τ0 for time, the critical
temperature TC for temperature, kBTC/N for the interaction coefficients.

Figure 1 shows the temporal developments of P(1)(n, t) and S(k, t). Figures 1(a) and
(b) show the behaviours in the case of y(t) = 0 and τ = ∞. From figure 1(a) we find that
P(1)(n, t) separates into two peaks completely. This indicates that the phase separation can
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Figure 1. Temporal development of the single-point distribution function P(1)(n, t) and the
dynamical structure factor S(k, t) for J0 R2 = 0.08, T = 0.88, N = 1000, v0 = 0.01 and
n0 = 0.5. The creation rate is y = n0/τ = 0.5/τ . The three figures in the left row, (a), (c) and
(e), are P(1)(u, t) and ones in the right row, (b), (d) and (f), are S(k, t). The lifetime of particles
is τ = ∞ for (a) and (b), 0.01 for (c) and (d), and 0.002 for (e) and (f). The inset of (b) shows
the behaviour during 0 � t � 0.004. In (c)–(f) for the case of the finite lifetime, the states with
‘t = 2 (stationary)’ can be considered as stationary ones. Units are defined as the following: N
for particle number and a−1

0 for wavenumber.

occur. The onset time tonset can be defined as a time when P(1)(n, t) begins separating and this
is when the order formation begins. We also investigated the temperature-dependence of the
onset time. When temperature approaches the critical temperature, the onset time increases
rapidly. This may be the manifestation of the critical slowing down. From figure 1(b), we find
that the dynamical structure factor grows and that the characteristic wavenumber kmax(t), at
which S(k, t) has a maximum peak, eventually becomes kmax(t → ∞) → 0. This manifests
that the system separates completely into two phases in the final state.

Figures 1(c)–(f) show the behaviour in the case of τ = finite and y(t) = 〈n〉/τ = constant.
From figures 1(c) and (e), we find that the order formation can occur in the case of
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τ = 0.01 > tonset, but it cannot occur in the case of τ = 0.002 < tonset. Figures 1(d)
and (f) show that the increase of S(k, t) stops. From figure 1(f), in particular, we find that
the thermal-fluctuation part proportional to k2 is dominant when the lifetime is short enough.
The characteristic wavenumber kmax(t) also approaches the finite value at t → ∞. This
manifests that the finite size [kmax(t → ∞)]−1 eventually remains. We found the power-
law dependence of [kmax(t → ∞)]−1 on τ and J0 R2: [kmax(t → ∞)]−1 ∝ τ 1/4 and
[kmax(t → ∞)]−1 ∝ (J0 R2)1/4. In order to extend our theory to exciton and electron–hole
systems, the quantum nature of the particles is important. This work is in progress [66].

8. Fermi-surface effects in optical transitions of one-dimensional metals

Here we consider an exciton (the Mahan exciton) in low-dimensional degenerate (doped)
semiconductors or in low-dimensional metals. Several optical transition probabilities reflect
the final-state interaction due to an optically generated hole potential. This interaction brings
about two kinds of intrinsic dynamical effects in degenerate electron systems: an orthogonality
catastrophe and a many-body excitonic correlation [67]. The former suppresses the transition
but the latter enhances it. This is a characteristic point in contrast to those in semiconductors.
We shall discuss these effects in d = 1. The most striking feature in optical responses of the TL
liquids is the power-law singularity, which is characterized by some critical exponents. We pay
attention to the valence-band photoemission spectrum, the core-level photoemission spectrum
and the OPA spectrum. These optical transition processes yield the power-law anomaly in the
edge spectra with different critical exponents [68, 69].

The d = 1 degenerate electron systems near the Fermi level are characterized by two (right-
and left-moving) branches of electrons. When the interparticle interaction in d = 1 is of the
short-range type, the Coulomb scattering strengths are represented by constant parameters:
g2, g4 and g1 with conventional notation [53], where g2 and g4 correspond to the strengths
of inter- and intra-branch forward scatterings, and g1, the backward-scattering strength. Then
the backward scattering is neglected because |g2| � |g4| � |g1|. We further classify the
interaction parameters in terms of the mutual spin orientation; the scattering between parallel-
spin (‖) particles and that between antiparallel-spin (⊥) ones are labelled separately as gi‖
and gi⊥, respectively, for i = 2, 4. For convenience, we define the parameters, Kρ and Kσ ,
for characterizing the interaction, i.e. Kν ≡ [(vF + g4ν − g2ν)/(vF + g4ν + g2ν)]

1/2 for ν = ρ

(charge degree of freedom) or σ (spin) with giρ ≡ (gi‖ + gi⊥)/2, giσ ≡ (gi‖ − gi⊥)/2, and vF

is the spin-independent Fermi velocity.
According to the usual bosonization, we linearize the conduction-band dispersion near the

Fermi points: ε(k) � ∑
j ε j (k)with ε j (k) ≡ ±vF(k ∓kF), where kF is the Fermi wavenumber

and j = 1 ( j = 2) corresponds to the right- (left-) moving branch. In this case, the d = 1
electron systems are described by the following Hamiltonian: Ĥ e = Ĥ e

0 + Ĥ e
int, where

Ĥ e
0 = 2πvF

L

∑
s

∑
p>0

[
�̂1s(p)�̂1s(−p) + �̂2s(−p)�̂2s(p)

]
, (41)

Ĥ e
int = π

L

∑
s,s ′
(g2‖δs,s ′ + g2⊥δs,−s ′)

∑
p>0

[
�̂1s(p)�̂2s ′(−p) + �̂1s(−p)�̂2s ′(p)

]
+
π

L

∑
s,s ′
(g4‖δs,s ′ + g4⊥δs,−s ′)

∑
p>0

[
�̂1s(p)�̂1s ′(−p) + �̂2s(−p)�̂2s ′(p)

]
(42)

and �̂ j s(p) ≡ ∑
k ĉ†

j,k+p,s ĉ jks is the spin-dependent density-fluctuation operator for spin
s =↑, ↓= ±1 in the j th branch, which obeys boson commutation relations. The electronic
Hamiltonian, Ĥ e, is described also as a sum of two diagonal parts describing the charge- and
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spin-density fluctuations: Ĥe = ∑
ν=ρ,σ

∑
p>0 vν p (α̂†

νpα̂νp + β̂†
νpβ̂νp). Here α̂ρp and β̂ρp (α̂σ p

and β̂σ p) are boson operators for the charge (spin) fluctuation, which are related to the density-
fluctuation operators via α̂†

νp = (π/Lp)1/2
∑

s=±1[�̂1s(p) cosh γνp ± �̂2s(p) sinh γνp] and

β̂νp = (π/Lp)1/2
∑

s=±1

[
�̂2s(p) cosh γνp ± �̂1s(p) sinh γνp

]
for ν = ρ, σ with cosh(2γνp) =

vF(1 + g2ν)/vν and sinh(2γνp) = vFg2ν/vν . Both the charge and spin density fluctuations have
linear gapless dispersions with constant velocities:

vν = 2(vF + g4ν)

Kν + K −1
ν

= [(vF + g4ν)
2 − g2

2ν]
1/2, (43)

for ν = ρ, σ .
Peculiar features of the TL liquid are found in its dynamical properties, which are

characterized by anomalous power laws in correlation functions. We shall study the single-
electron Green function: Ge

j s(x, t) = −i�(t)〈ψ̂ j s(x, t)ψ̂†
j s(0, 0)〉, where�(t) is the unit-step

function and ψ̂ j s(x, t) is the Heisenberg representation of the field operator ψ̂ j s(x) for an
electron in the j th branch with spin s. The average is made by the Fermi vacuum at zero
temperature. Using the diagonalized Hamiltonian, we have

Ge
j s(x, t) = e±ikF x

2π
lim
δ→0

� + i(vFt ∓ x)

δ + i(vFt ∓ x)

∏
ν=ρ,σ

1√
� + i(vν t ∓ x)

[
�2

(� + ivν t)2 + x2

]γ νTL

, (44)

where j = 1 (2) corresponds to the upper (lower) sign of the right-hand side, � and δ
are cutoffs, and the exponent is γ νTL = (1/8)(Kν + K −1

ν − 2) � 0. Equation (44) gives a
universal behaviour of the Green function, which is independent of detailed cutoff forms. For
t = 0, the single-electron Green function decays as Ge

j s(x, 0) ∼ x−βTL−1 with the exponent
βTL ≡ 2

(
γ
ρ
TL + γ σTL

)
� 0, which appears in all single-electron properties; e.g., the momentum

distribution function n(k) ∼ 1/2 − C|k − kF|βTL sign(k − kF) (here C is a positive constant)
and the single-particle density of states N(ω) ∼ |ω|βTL . The critical exponent βTL is rewritten
as

βTL = 1

4

(
Kρ + K −1

ρ + Kσ + K −1
σ

) − 1 = 1

2

∑
ν=ρ,σ

[
1 −

(
g2ν

vF + g4ν

)2
]−1/2

− 1 � 0. (45)

Before the optical transition occurs,we assume that the partially filled band has N electrons
forming the TL liquid and there is no positive hole in any levels and bands. Hereafter this
initial state is called the N-electron–0-hole state, denoted as the (N, 0) state. In this section,
we consider three types of final states after optical transitions.

(a) From (N, 0) to (N − 1, 0). After an electron in the N-electron TL system is excited to be
emitted as a photoelectron, the final state is the (N − 1, 0) state, where no optical hole is
generated and the number of electrons only decreases by one.

(b) From (N, 0) to (N, 1). When an electron in a core (valence) level is excited by a larger-
energy photon to be detected as a photoelectron, the final state is (N, 1), where the number
of electrons in the TL liquid remains unchanged and a hole is abruptly generated. Here
the Auger processes are neglected.

(c) From (N, 0) to (N + 1, 1). When an electron in a core level is excited by a photon to an
empty state of the partially filled band, the final state is the (N + 1, 1), where an electron
is added to the TL liquid band and a hole is suddenly generated, i.e. the numbers of both
electron and hole change simultaneously by one.
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8.1. Valence-band photoemission: (N, 0) → (N − 1, 0)

Valence-band photoemission spectroscopy measures the energy distribution of the
photoelectrons ejected from a partially filled band by absorbing photons of a fixed frequency.
The valence-band photoemission spectrum PPES(ε) as a function of the photoelectron energy
ε (measured from the Fermi energy EF) reflects directly the density of states N(ω). Then
PPES(ε) ∼ εβTL�(ε). The critical exponent βTL is given by equation (45). The valence-band
photoemission spectrum can be direct evidence for the absence of a discontinuous jump at
k = kF in the momentum distribution of the TL liquid. Thus nonzero βTL is evidence of the
TL liquid.

The valence-band photoemission spectrum is the Fourier transform of the time-domain
single-electron Green function Ge

j s(t) = −i�(t)〈eitĤe/h̄ ψ̂ j se−itĤe/h̄ ψ̂
†
j s〉 ∼ t−βTL−1, that is,

PPES(ε) ∼ (EF − ε)βTL . Thus valence-band photoemission spectroscopy is an effective tool
for investigating TL liquid properties, particularly its single-electron properties.

8.2. Core-level photoemission: (N, 0) → (N, 1)

Here we mention the orthogonality theorem. When dynamical and local perturbations are
applied to degenerate electron systems, low-energy excitations near the Fermi energy come
into play and give rise to an infrared divergence [67]. The overlap integral between the
total electronic wavefunctions, |�i〉 and |�f〉, of the Fermi sea without and with a local
potential becomes zero as the system size goes to infinity, i.e. these two states are orthogonal:
|〈�f |�i〉|2 = n−βoc/2

F . Here nF is the number of (s-wave) electrons and βoc is the critical
exponent for the orthogonality catastrophe. To detect phenomena related to the orthogonality
property, the sudden appearance of an external local potential is necessary. This can be done
in core-level photoemission spectroscopy.

Core-level photoemission spectroscopy measures the energy distribution of the
photoelectrons ejected from a core level in a metal by absorbing photons of a fixed frequency. If
the existence of conduction electrons is neglected, only a sharp line will be observed. When the
photon energy is high enough for the photoelectron to leave the metal instantly without being
affected by a final-state interaction, the sharp line broadens with a long tail on its lower-energy
side. For the core-level photoemission spectrum, Pcore(ε), the probability of finding an ejected
electron at an energy ε lower than the main peak, is a direct measure of the probability that the
conduction electrons will be excited with an excitation energy ε due to the hole potential.

When an optical hole with spin −s (an excited electron with spin s) is created, the
electron–hole Coulomb attraction abruptly appears. Here the hole is assumed to be localized.
The Hamiltonian describing the electron–hole correlation is given by Ĥh

int(s) = Ĥh
ρ + Ĥh

σ (s)
with [70]

Hh
ρ = − gh

2ρ

2

(
πKρ

L

)1/2 ∑
p>0

√
p

(
α̂†
ρp + α̂ρp + β̂†

ρp + β̂ρp

)
, (46)

Hh
σ (s) = − gh

2σ

2

(
πKσ

L

)1/2

s
∑
p>0

√
p

(
α̂†
σ p + α̂σ p + β̂†

σ p + β̂σ p

)
, (47)

where gh
2ρ = (gh

2‖ + gh
2⊥)/2 and gh

2σ = (gh
2‖ − gh

2⊥)/2 denote the strength of the electron–hole
forward scattering. Using this electron–hole interaction, we calculate the single-hole Green
function of the TL liquid in time domain; Gh

s (t) ≡ −i�(t)e−iE0 t/h̄〈eitĤe/h̄ e−it[Ĥe+Ĥh
int(s)]/h̄〉 ∼

t−βoc , where E0 is the energy separation between the core level and the Fermi level. Here the



S3588 T Ogawa

critical exponent βoc is independent of the hole spin and is given as

βoc = 1

64

∑
ν=ρ,σ

(
gh

2ν

vF + g4ν

)2 (
Kν + K −1

ν

)4 {
1 ∓ [

1 − 4
(
Kν + K −1

ν

)−2]1/2}

= 1

4

∑
ν=ρ,σ

(
gh

2ν

vF + g4ν

)2 (
1 − g2ν

vF + g4ν

)−1/2 (
1 +

g2ν

vF + g4ν

)−3/2

� 0, (48)

where Kν < 1 (Kν > 1) corresponds to the − (+) sign on the right-hand side of equation (48).
An asymptotic behaviour of the core-level photoemission spectrum near the main peak,

which is given by the Fourier transform of Gh
s (t), i.e. Pcore(ε) ∼ (Ecore − ε)βoc−1�(Ecore − ε),

shows the power-law divergence near ε ∼ 0 because of 0 � βoc < 1. Appearance of the
power-law singularity instead of the δ-function peak means that the quasiparticle picture is
invalid in the TL liquid, resulting from simultaneous excitation of many particle–vacancy pairs
near the Fermi level.

8.3. The one-photon absorption: (N, 0) → (N + 1, 1)

We shall consider the OPA process. The absorption spectrum WOPA(ω) also exhibits the
power-law singularity near the Fermi edge with an exponent βFES. The critical exponent
βFES is directly related to a power-law exponent of the current–current correlation function
Cs(t) at zero temperature: Cs(t) = 〈eitĤe/h̄ψ̂se−it[Ĥe+Ĥh

int(s)]/h̄ψ̂†
s 〉 = 〈Ĵ †

s (t)Ĵs(0)〉 with

ψ̂s ≡ ψ̂1s(0)+ψ̂2s(0). Here the current operator is Ĵs(t) ≡ eitĤe/h̄
∑

j=1,2 Ûsψ̂
†
j se−itĤe/h̄ , where

the unitary operator Ûs is defined through Û †
s ĤeÛs = Ĥe + Ĥh

int(s). For large t , Cs(t) decays
as a power law: Cs(t) ∼ t−βFES−1. Then the OPA spectrum, which is the Fourier transform of
Cs(t), shows the power-law anomaly, i.e. WOPA(ω) ∼ (h̄ω − EFES)

βFES�(h̄ω − EFES), where
EFES is an energy of the Fermi absorption edge.

The FES exponent consists of three parts as βFES = βTL + βoc + βex [69, 70], where βTL

and βoc are positive (corresponding to suppression of the transition probability) and given by
equations (45) and (48), respectively, but βex is negative, indicating the enhancement of the
transition probability, i.e.

βex = −1

4

∑
ν=ρ,σ

gh
2ν

vF + g4ν

(
Kν + K −1
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) = −1

2

∑
ν=ρ,σ

gh
2ν

vF + g4ν

[
1 −

(
g2ν

vF + g4ν

)2
]−1/2

� 0,

(49)

which is an effect due to the Mahan exciton. Thus the FES exponent in OPA spectra contains all
information on the TL-liquid character (βTL � 0), the orthogonality catastrophe (0 � βoc < 1),
and the many-body excitonic correlations (βex � 0). Therefore the FES exponent can be
either negative or positive depending on the balance between the positive parts βTL + βoc

and the negative part βex. The negative (positive) βFES results in the power-law divergence
(convergence) of the edge spectra. The electron–hole attraction (gh

2‖ > 0 and gh
2⊥ > 0) is

necessary to obtain the divergent edge. Here we note that the FES exponent of the TL liquid is
independent of the hole motion [69]. These results are summarized in table 3. The FES has been
observed clearly in several experiments using modulation-doped semiconductor wires [71].
Magnetic-field effects [72] and the long-range Coulomb interactions [73] have been studied
extensively, but nonlinear responses of the Mahan exciton remain to be understood.
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Table 3. Comparison among the critical exponents of power-law singularities in several optical
spectra of a d = 1 metal. Corresponding correlation functions are also given. Here ψ̂ is the field
operator of an electron, Ĥe is the electronic Hamiltonian, and Ĥh

int means the electron-core hole
interaction.

Optical spectra Critical exponents Corresponding correlation functions

Valence-band βTL Single-electron Green function

photoemission PPES(ε) Ge(t) ∝ 〈eitĤe/h̄ ψ̂e−itĤe/h̄ ψ̂†〉
(N, 0) → (N − 1, 0) ∼ t−βTL−1

Core-level βoc − 1 Single-hole Green function

photoemission Pcore(ε) Gh(t) ∝ 〈eitĤe/h̄e−it[Ĥe+Ĥh
int ]/h̄〉

(N, 0) → (N, 1) ∼ t−βoc

One-photon βTL + βoc + βex Current–current correlation function

absorption WOPA(ω) C(t) ∝ 〈eitĤe/h̄ ψ̂e−it[Ĥe+Ĥh
int ]/h̄ ψ̂†〉

(N, 0) → (N + 1, 1) ∼ t−βTL−βoc−βex−1

9. Interplay between a bound state and the spin degrees of freedom in the Fermi-edge
singularity

Previous theories [74–76] of the FES told us that

(i) there are two thresholds in the absorption spectrum and
(ii) as the density increases, the absolute (lowest-energy) threshold grows continuously from

the 1s exciton (X) to the divergent FES, while the other step-like continuum edge develops
to the convergent FES.

In recent experiments on modulation-doped semiconductor quantum wells [77–79], the bound
state gives rise to not only a sharp X peak in the spectra at low densities but also to another
peak below the X peak, which is assigned to a negatively charged exciton, a ‘trion’ (X−). As
the density increases, the X− peak seems to evolve smoothly into the FES, while the X peak
shifts to higher energy, losing its intensity, and ultimately merges with the high-energy tail
of the X− edge spectrum. Hawrylak [80] calculated numerically the optical spectra in such
systems to show two absorption peaks resulting from two spin-channel effects. Here we focus
on how a bound state affects the optical spectra as the carrier density varies in d = 2. We try to
clarify whether the thresholds are divergent or convergent and to obtain an analytical formula
of the critical exponents and amplitudes of these thresholds [81].

We shall consider only the optical absorption process, and start with the Mahan–Nozières-
DeDominicis Hamiltonian:

Ĥ =
∑
k, σ

εkĉ†
k, σ ĉk, σ + εcd̂†d̂ −

∑
k,k′, σ

V (k, k′)ĉ†
k′, σ ĉk, σ d̂†d̂, (50)

which describes electrons in the conduction band with two-dimensional momentum k and
spin σ = ± 1

2 (created by ĉ†
k,σ ) interacting with a valence-band hole (d̂†) via the Coulomb

interaction V (k,k′). The conduction-band electrons are assumed to be noninteracting. The
valence-band hole is assumed to be localized at the origin and its spin index is omitted
since it plays no role in our problem; we consider only the case where the photon is σ−
polarized and a spin-up electron is excited leaving behind a hole with down spin. The
system is assumed to be initially in the ground state of conduction-band electrons and a
vacuum of a hole at zero temperature, denoted as |i〉. Then the absorption spectrum can be
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written as I (ω) = 2 Re
∫ ∞

0 dt exp(iωt)I (t), where I (t) is the absorption response function:

I (t) = ∑
b,b′ wbwb′F(b, b′|t) with F(b, b′|t) = 〈i| exp(iĤ t)d̂ ĉb,↑ exp(−iĤ t)ĉ†

b′,↑d̂†|i〉. Here
wb is the dipole transition matrix element at the wavevector b.

In the absence of bound states, the absorption spectrum consists of one continuous
spectrum that begins at the absolute threshold. Effects of electron-spin degeneracy have been
thought to appear simply as follows:

(i) doubling the ground-state energy shift between the initial and a final configuration, and
(ii) changing the critical exponent tending to suppress the divergent singularity.

On the other hand, in the presence of a bound state, the final-state configuration falls into four
classes depending on whether the bound states are occupied or not. In the spinless case the final-
state configuration has only two classes, occupied or not. Each of these four configurations
gives rise to their own spectrum starting at each threshold.

With the use of the Fermi-golden-rule approach, we find that the absorption response
function, I (t), has the form of

I (t) =
{
IX−(t) +

[
I(1)X (t) + I(2)X (t)

]
exp[−i(EF + Eb)t]

+ IC(t) exp[−2i(EF + Eb)t]
}

exp(−iωtht), (51)

where EF is the Fermi energy measured from the bottom of the scattering states, and Eb is the
energy gap between the bottom of the scattering states and the bound state (i.e. the exciton
binding energy). Here the energy of the absolute threshold is ωth = �E + EF + Egap, where
Egap is the band-gap energy and �E is the ground-state energy shift due to the valence-hole

potential: �E = −2
∫ EF

0 dε δ(ε)/π − 2Eb with the scattering phase shift δ(ε). The detailed
form of Iν(t) (ν = X−, X(1), X(2) and C) is not shown here.

The function IX−(t), related to the spectrum beginning at the absolute threshold, results
from the doubly occupied bound state (the X− configuration in the low-density limit), and
when the carrier density goes to zero (EF ∼ 0), this threshold becomes the X− peak. The
second term, I(1)X (t) + I(2)X (t), corresponds to the ‘exciton’ (X) in the limit of EF → 0; here
X(1) (X(2)) is a spin-singlet (spin-triplet) ‘exciton’ in the low-density limit. The last term,
IC(t), stands for the vacant bound state. The energy of these thresholds, IX− , IX, and IC, is
evaluated in terms of the phase shift, respectively, as

ωX− = ωth = −2
∫ EF

0
dε
δ(ε)

π
− 2Eb + EF + Egap, (52)

ωX ≡ ω
(1)
X = ω

(2)
X = −2

∫ EF

0
dε
δ(ε)

π
− Eb + 2EF + Egap, (53)

ωC = −2
∫ EF

0
dε
δ(ε)

π
+ 3EF + Egap. (54)

The integrated intensity of each contribution, Iν(t = 0), is also evaluated, which will be
reported elsewhere. When no spin degrees of freedom are taken into account, there are only
two thresholds, ‘main’ (m) and ‘secondary’ (s). The absorption response function becomes
Ispinless(t) = {Im(t) + Is(t) exp[−i(EF + Eb)t]} exp(−iω0

tht), where energies of the thresholds
are ωm = ω0

th = 1
2�E + EF + Egap and ωs = 1

2�E + Eb + 2EF + Egap.
We here present numerical results of the absorption spectra. To proceed with the

numerical calculation, we employ the time-dependent coupled-cluster expansion method [82].
After the photoexcitation, the Hamiltonian becomes Ĥfinal = ∑

k,k′,σ 〈φk′ |ĥ|φk〉ĉ†
k′,σ ĉk,σ + εc,

which is a sum of the matrix elements of electronic one-body Hamiltonians, 〈φk′ |ĥ|φk〉 =
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δk,k′εk − V (k,k′). Then we have an integrodifferential equation for F(b, b′|t) in a closed
form:

i
d

dt
F(b, b′|t) = [εc − 2η(t)]F(b, b′|t)

+
∑
b′′(>)

[
〈φb|ĥ|φb′′ 〉 −

∑
m(<)

s(b,m|t)〈φm|ĥ|φb′′ 〉
]
F(b′′, b′|t), (55)

where

η(t) = −
∑
m(<)

[〈φm|ĥ|φm〉 − εm

] −
∑
b(>)

∑
m(<)

s(b,m|t)〈φm|ĥ|φb〉, (56)

i
d

dt
s(b,m|t) = 〈φb|ĥ|φm〉 +

∑
b′(>)

〈φb|ĥ|φb′ 〉s(b′,m|t)−
∑

m′(<)
s(b,m′|t)〈φm′ |ĥ|φm〉

−
∑
b′(>)

∑
m′(<)

s(b,m′|t)〈φm′ |ĥ|φb′ 〉s(b′,m|t). (57)

The symbol < (>) in the summations means ‘below’ (‘above’) the Fermi level. The initial
conditions are given by F(b, b′|0) = δb,b′ and s(b,m|0) = 0.

For simplicity, the valence-hole potential is assumed to be a contact-type V . We take the
centre of the conduction band as the origin ε = 0 of the energy level and the unit of energy is
a half of the total band width of the conduction band. Then the Fermi energy εF is in a range
of −1 � εF � 1. The density of states of the conduction band in d = 2 is constant: N(ε) = 1

2
for −1 � ε � 1. The energy level of a bound state is ελ = −coth(1/V ). The phase shift δ(ε)
is calculated as tan δ(ε) = πV

[
2 + V log|(1 + ε)/(1 − ε)|]−1

for two-dimensional systems.
Figure 2 shows typical absorption spectra in d = 2 for several values of the Fermi energy

εF. We see a symmetric X peak and a broad continuum band, and no sign of the X− threshold
appears in the insulator limit (εF = −1). As the Fermi energy increases, we can see an abrupt
increase of the IX− intensity and decrease of IX and IC. At finite εF, IX− and I(1)X become
divergent power-law singularities. For comparison, absorption spectra calculated with the
spinless fermion theory are also shown, which have only two thresholds.

In the long-time limit, the functions Iν(t) exhibit a power-law decay. Then near the
threshold region, the spectra behave asymptotically as Iν(ω) ∝ µν (ω − ων)

βν . The critical
exponents βν are

βX− = (δ0/π − 1)2 + (δ0/π)
2 − 1 � 0, (58)

β
(1)
X = 2(δ0/π − 1)2 − 1, (59)

β
(2)
X = (δ0/π − 2)2 + (δ0/π)

2 − 1 > 0, (60)

βC = (δ0/π − 2)2 + (δ0/π − 1)2 − 1 � 0, (61)

with the phase shift at the Fermi level, δ0 = δ(ε = εF). These critical exponents satisfy
Hopfield’s rule of thumb. The critical amplitudes µν are also analytically obtained but
are very complicated, and will be given elsewhere. When no spin degrees of freedom are
taken into account, the exponents of the thresholds are βm = (δ0/π − 1)2 − 1 � 0 and
βs = (δ0/π − 2)2 − 1 � 0.

The absolute (lowest) threshold (X−) is always divergent since βX− � 0, while the C
(highest) threshold is always convergent (βC � 0). At the X threshold the first contribution
I(1)X (ω) leads to a divergent threshold only when δ0/π > 1 − 1/

√
2, whereas the second
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Figure 2. Optical absorption spectra in d = 2 for the contact-type hole potential V = 0.8, where
the exciton binding energy is Eb = 0.179. The left (right) column corresponds to the case where
the spin degrees of freedom are (are not) taken into account. The Fermi level εF is chosen to be
−1.0 (undoped case), −0.95, −0.8, −0.6 and −0.4 from top to bottom. In the left column, the
three dashed vertical lines represent the threshold energies of the doubly occupied (ωX−), singly
occupied (ωX) and vacant bound states (ωC), respectively. (For εF = −0.4, ωC is out of range.) In
the right column, there are only two threshold energies, ωm andωs. A phenomenological dephasing
constant is chosen to be 0.002.

one I(2)X (ω) is always convergent. In the low-doping limit, δ0 approaches π from below, then
I(1)X (ω) tends to a δ-function-like absorption line, the X peak. We note that the exponentβ(1)X is a
monotonously increasing function of δ0. As the Fermi energy (the doping density) is increased,
the exponent β(1)X increases from β

(1)
X < 0 to β(1)X > 0, hence β(1)X changes its sign. Therefore,

the X(1) threshold exhibits the crossover from the divergent to the convergent edge spectrum.
This is a characteristic peculiar to the spin- 1

2 model. We note that the photoluminescence
spectra in d = 1 and 2 have also been calculated.

On-site Coulomb repulsion between two bound-state electrons is not included in the
present theory. This leads to a major quantitative difference from the experimental results.
Moreover we take the strength of the valence-hole potential V as a parameter independent of
the carrier density. In actual systems, however, the potential V (k,k′)will not be a contact type
and may depend on the carrier density. Spin-dependent, exchange-type interactions should
also be incorporated. Not only such electronic correlation but also effects of motion of a hole
are left for future studies.
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10. Conclusions

We have overviewed several exciton-related problems from theoretical viewpoints. In
particular, we stress universal (material-independent) features of low-dimensional exciton
systems. One notices the crucial importance of the dimensionality of materials in optical
responses of meso- and microscopic systems. Geometrical confinement of excitons and
the dielectric image-charge effects as well as the single-electron band structures are keys
for designing novel materials with new optical functions. Moreover, many-body effects,
electron–electron correlations, the Fermi-surface effects and the quantum fluctuations also
play important roles in the optical responses of low-dimensional materials.

All the exciton problems attracting interest recently are related to quantum many-body
problems and/or to nonequilibrium dynamics far from thermal equilibrium. Not only the
electron, the hole and the mutual Coulomb interaction, but also their stage and some supporting
players, contribute to novel properties. For example, the exciton-lattice interactions lead to the
self-trapping phenomena [83], the randomness can induce exciton weak localization [84], or
exciton–photon interaction results in exciton squeezing. These effects and their dimensionality
open new fields in photophysics. Moreover, it will be of great interest to use photons not only
as a probe for materials but also as a trigger for drastic change and control of the material
states, even including the ground state. This photoinduced phase transition [85] is also a new,
promising field, where details of excited states should be well understood.

Although the theories introduced here do not always include all the actual details, we
believe that these findings hold universally in electron–hole systems and will be of great
significance in the interpretation of experimental results. In addition, this paper will offer a
guiding principle in the materials design of new low-dimensional materials.
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